Lecture 10-2: Design for the World Wide Web

- · Hypertext and Hypermedia
- · Web Design vs. GUI Design
- · Design Principles for the Web
 - Nielsen Top ten mistakes
 - Spool / UIE Empirical studies
 - Evans Literature review
- · Recent Studies

Lecture 9 Slide 1

Hypertext and Hypermedia

- Hypertext
 - Collection of non-linear, text-based nodes that are linked together
 - "Hyperlinks"
 - 1994 Definition (from Nielsen): Traditional text is sequential, linear, whereas hypertext is non-sequential - there is no single order which determines the sequence in which text is to be read.
 - Early 90s applications: interactive stories with no fixed narrative sequence
- Hypermedia
 - In addition to simple bits of text, pictures, video, sound, animations are hyper-linked
 - Hypertext + Multimedia = Hypermedia

Lecture 9 Slide 2

History of Hypertext

- Predates the Internet by 50+ years
- Vannevar Bush (1945) Atlantic Monthly article "As we may think"
- Proposed system for storing knowledge and linking by associations using portable computer-like devices
- Ted Nelson (1960 ff.) Project Xanadu
 - Hypertext information system, side-by-side parallel document display
 - Two-way links, links don't "break"
 - Continues to this day www.xanadu.net
 - "Web is an imperfect realization of Xanadu"
- Doug Engelbart (1980s) Guide
- Bill Atkinson (late 80s) Apple Hypercard
 - Inspired by Xanadu
- · Ray Ozzie Lotus Notes
- · Tim Berners-Lee (Inventor of HTML) Proposal for World Wide Web
 - Inspired by Xanadu and existing hypertext instantiations

Lecture 9 Slide 3

Picture of Xanadu simulated terminal Can be found at http://xanadu.com/tech/index.html

1972 Realization of Xanadu

Picture of Apple Hypercard

Lecture 9 Slide 5

The Future of Hypertext

- J. C.Spohrer et al. WorldBoard
 - http://www.worldboard.com/
 - Spohrer (1999) "Information in Places" IBM Systems Journal
 - Enhancement of the web allows people to associate information with places
 - *virtually attach information, tools and services to any location on the planet
 - or, using an identification tag, to objects or people in the environment"
 - "Augmented reality" instead of "virtual reality"
- · From Spohrer (1998)
 - WorldBoard servers associate information (a personal, password protected Web page) with any plane at any location around the planet,
 - WorldBoard clients with "plus or minus one meter location sense" allow Web pages from the WorldBoard server to be browsed and authored,
 - WorldBoard glasses with "context sense" and head & eye tracking capabilities allow information to appear fixed and co-registered with reality
 - WorldBoard service archive information and design information spaces both indoors (offices, homes) and outdoors (national parks, tourist sites).

Lecture 9 Slide 6

Worldboard Scenario

From Spohrer (1998) Apple Technical Report

"While on sabbatical during the summer of 1996, I was hiking near Mt. Shasta in northern California, and pondering the question: What comes after the WWW. However, I was soon distracted by a beautiful plant beside the trail, and wanted to know what it was. I imagined being able to use my PowerBook with Ricochet modern to search the WWW and find a similar picture. If I could find such a picture, then I would know what the plant was. However, the next person who came along and wondered what the plant was would be in exactly the same position as me. I took a digital picture of the plant, so I could later ask someone what kind of plant it was. A few people in my group at Apple had been playing with GPS systems, and it occurred to me they had been talking about using a camera in conjunction with a GPS to geocode or "place stamp" pictures. I pushed my glasses back up my nose, and imagined putting it all together, including a new viewing system built into my glasses, and a way to leave information at that spot for the next hiker who asked the question I had asked. Eventually, I came to call this notion WorldBoard."

Lecture 9

Slide 7

Historical Connections to the Web

- · Tim Berners-Lee
 - 1989 Writes hypertext editor for NeXT at European Physics Lab CERN
 - Method of associating technical papers in physics
 - First web server
 - Original proposal (http://www.w3.org/History/1989/proposal.html)
 - Introduced to physics, NeXT, and hypertext communities, 1991
 - Definitions for URLs, HTTP, and HTML published on 1st web server
 1993 Mosaic browser (for PC) written at Illinois by Andreessen
 - Browsers move beyond NeXT, Mosaic is parent of both Netscape and IE
 - 1994 World Wide Web Consortium formed

Web Design: Functions Relating to Usability

- · User Interface Design
 - Readability, button design, navigation, page organization, menus, etc.
- Graphic Design
- Information Architecture
- Site-wide organization and navigation
- Prototyping
 - Extremely blurred in this domain
 - Less emphasis on throw-away prototyping
 - Designers may produce HTML up front
 - Sites may be posted and improved rather than "prototyped"
- · Usability Testing

Lecture 9 Slide 9

Web Design vs. GUI Design

How different is web design from designing GUI screens & windows?

- · Adaptation of document model
- · Browser variability Cross-Platform Design
- · Tension between exact graphic control versus abstraction
- · Response Time
- · User controls navigation
- · Design does not control complete environment
- · Real estate and scrolling

Lecture 9 Slide 10

Nielsen (1997) – Workstation vs. WebTV

Pictures of text on web TV
See article at
http://www.useit.com/alertbox/9702a.html

Lecture 9 Slide 11

Web Browsing on PDAs

- Web pages built specifically for PDAs vs. general surfing from PDA
- Web based-email: cross-platform viewing is expected

Pictures of webmail, MS Hotmail Lecture 9 Slide 13 Lecture 9 Slide 14

Browse the web long enough and you'll hit one of these

Lecture 9

Example - Font not available to browser

Slide 15

"Anyone who slaps a 'this page is best viewed with Browser X' label on a Web page appears to be yearning for the bad old days, before the Web, when you had very little chance of reading a document written on another computer, another

-Tim Berners-Lee in Technology Review, July 1996

Slide 16

word processor, or another network."

http://www.anybrowser.com

Lecture 9

Go to http://www.lynda.com/hexh.html

Browser safe colors -- http://www.lynda.com/hexh.html

Slide 17

Tension between exerting control over graphics versus allowing abstraction – EXAMPLE: Nielsen (2000) = Don't defeat browser's built in facility to change color of visited links

Lecture 9 Slide 18

Semantic Encoding (Nielsen, 2000)

- HTML Tags
- Specification of font and size versus logical category
 - <bi>and <oi>→ obsolete = <menu>
 - <code> computer code sample (fixed width font)
 - Emphasis
 - Strong Emphasis
 - <tt> Typewriter Font (fixed width)
 -
-
b> Bold
 - <i> Italic
 -
- · Style Sheets

Lecture 9 Slide 19

Nielsen (2000) on Response Time (1)

- Miller (1968)
 - 0.1 seconds -- perceived as instantaneous
 - 1 second user notices delay but flow uninterrupted
 - 10 second limit by which users don't turn to another task
- · Web delays unpredictable
 - Multiple points of delay
 - server throughput
 - · server connection
 - Internet
 - · user's connection
 - · user's browser and computer

J. Nielsen (2000) Designing Web Usability. New Riders.

Nielsen (2000) on Response Time (2)

- · Design pages for speed
 - Minimize needed number of graphics
 - Repeat graphic images, etc.
 - Design page so it works equally well when graphics not rendered (before rendered)
 - Avoid flash, plug-ins etc or allow user to skip
 - Keep pages below 34 kilobytes for modem users

Lecture 9 Slide 21

Nielsen: Top Ten Mistakes (1)

- · Using frames
 - Violate the user model of web pages
 - Can bookmark page as user sees it, can't copy down URL
 - Printing is difficult
 - Search engines have trouble point to correct frame composite
 - Not compatible with older browsers (no longer an issue)
 - Back button may not work predictably (older browser versions)
 - A page is the unifying atomic unit of the Web: combines what the user sees, the addressable unit, navigation unit, author's editable unit – frames violates this
- · Gratuitous use of "bleeding-edge" technology
 - Will discourage users, most users care about content and not latest technology
 - If a site crashes a users browser or computer, user will not be back
 - Example: Use VRML ("virtual reality") only if content truly requires mapping onto 3-D space

Lecture 9 Slide 22

Nielsen: Top Ten Mistakes (2)

- · Scrolling text, marquees, and constantly running animations
 - "Dancing baloney"
 - Moving images are overpowering
 - motion has special attention-orienting effect on peripheral vision
 - "<BLINK> is evil" (Nielsen)
 - Common compromise solution: Animated GIFs which go thorough a few change cycles then stop
- Complex URLs
 - User do not ignore URLs but rather attempt to decode and understand the architecture of the site from the URLs
 - URLs should contain human-readable directory and file names that are relevant to the content
 - Users type in URLs, therefore
 - use short names
 - use all lower case
 - avoid special characters (e.g. tilde, ~, may be diffucult to find or type, appears many different places on many keyboards)

Nielsen: Top Ten Mistakes (3)

- Orphan pages
 - Users may come into pages without going through top level/home page
 - All pages should have clear indication of the web site in which they reside
 - There should be a link to the home page on every page
- There should be some indication of where user is inside "site map"
- Long scrolling pages
 - All critical content and navigation should be on top part of page
 - 1996: Only 10% of users scroll a page
 - More recent finding indicate users are more willing to scroll
- Lack of navigation support
 - Communicate structure of site to user
 - Provide site map
 - Always provide a <u>search</u> feature

Lecture 9 Slide 23 Lecture 9 Slide 24

Nielsen: Top Ten Mistakes (4)

- · Non-standard link colors
 - Link color (blue for new, red/purple for links that have been followed) is one of the few built-in and consistent navigation cues
 - Don't alter default link colors
- Outdated information
- Need to prune old, irrelevant pages
- Overly long download times
 - Traditional guidelines give 10 seconds as max response time
 - Nielsen says can increase limit to 15 seconds
 - Both are impractical, but download is still more important and troublesome factor (even thought users are used to the "World Wide World").
 - Need to consider factors which slow download times, large graphics files, flash animations etc.
 - . E.g., Pictures which are re-sized should also be re-sampled
 - J. Nielsen (1996, 1999, 2003) http://www.useit.com/ & elsewhere.

Lecture 9

Slide 25

UIE Website Study (1997)

- Jared Spool et al. (1997) User Interface Engineering
- 9 Web sites (HP, Edmund's, Disney, etc.)
- · "Scavenger hunt" tests: Asked 4 types of questions
 - Simple fact
 - Can you get a Honda Accord for under \$15,000?
 - Comparison of facts
 - Which is cheaper to fly to, Nevada or England?
 - Judgment
 - Do you think a used Ford F-10 is safe enough?
 - Comparison of judgment
 - Which convertible is the best deal for under \$20,000?
- · Obtained rankings
- · Examined web sites, correlated factors with success of site

Lecture 9 Slide 26

UIE Study Implications

- · Graphic design neither helps nor hurts
 - does not help users retrieval information from site
 - professionally design sites were at top and bottom of rankings
 - Text links are vital
- users examined text links before considering image links
- · Navigation and content are inseparable
 - shell strategy or common overall structure to site
 - generic links in "shell" sites were a problem
- Information retrieval is different from surfing
 - sites aimed at information retrieval must be differently designed
- · Webs sites aren't like software
 - when asked which site they liked best, some users choose the one they were most successful with, but others did not
 - contrary to results found with software

Lecture 9 Slide 27

Evans (1989)

- University of Washington thesis
- Review of literature as applies to web design questions
 - not all empirical research directly on web interfaces per se

The Questions:

- Page downloading time
 - Web surveys show people use modems and have slow connection speeds
 - Slow page downloading identified as problem
 - Errors increase as delays go beyond 12 seconds
- Vocabulary
 - Must use user's language
 - Studies show vocabulary can prevent people from obtaining information or actions they want from a system
 - Problem is that people differ widely

Evans (1989) (2)

- · Writing to be read online
 - People read online text differently from print
 - Users scan blocks of text, move quickly among pages
 - Sites should be designed to be easy to scan, with concise language
- · Site topology hierarchy vs. other
 - People are "searchers" or "browsers"
 - Hierarchy works best for searchers, network better for browsers
 - Study found users find information fastest in site organized as a combination of hierarchy and network
 - Arrange information in a manner meaningful to users
- Number of levels on a site
 - Users complete searches faster and more accurately with broader menu structures
 - With more options, deep structures are better
 - Information must be meaningfully organized

Lecture 9 Slide 29

Evans (1989) (3)

- · Make links predictable
 - Users choose menu option more accurately when they can view information which helps them predict the results
 - Add descriptors
 - Have users pick option names
- · Link colors
 - Only a weakly positive effect of using default link colors observed in empirical research (Spool, 1997)
- · Embedding links in text
 - Do links embedded in content text distract, hinder comprehension?
 - Studies indicate no:
 - · Provide links in text versus menus separated from text
 - · Navigation faster and info found more quickly with embedded links

Lecture 9 Slide 30

Evans (1989) (4)

- · Arranging links (in menus)
 - Users can search for information faster when links or menu options are arranged vertically rather than horizontally
- Image links
 - Difficult to create icons that are meaningful to all users in the same way
 - Difficulties: images do not change color when visited
 - Text labels should be included with all images that are links
 - Also required for accessibility
- · Number of links

Lecture 9

- Do more links make search difficult?
- Studies indicate no:
 - People found information faster when pagers contained more links versus fewer links
 - Presenting alternative links on same page allowed users to find information faster

Evans (1989) (5)

- Information overviews (Site maps)
 - People prefer having an overview
 - User searching for information prefer an index, users exploring a system preferred graphical representation
- Page density (white space)
 - Increasing the amount of text/graphics slows information search
 - However, with web sites, high densities on few screens was better than low densities on many screens
- · Background and text color
 - Text and background should contrast strongly in brightness and hue
 - White/black is most legible
 - Blue and cyan good for backgrounds but bad for text
- · Legibility
 - Affected by font size, case, style, but little research done on online text

Slide 31 Lecture 9 Slide 32

Evans (1989) (6)

- Blinking text and animations
 - Study show people irritated by animations, no study done on blinking text
 Word search not affected by blinking of some text on screen

Examples for discussion

- · Portals MSN, etc.
- Volkswagen "mystery meat navigation"
 - http://www.mace.co.uk/mace/
- Text visibility and animation
- Others

Slide 33 Lecture 9

Slide 34 Lecture 9