Lecture 8-1: Input Devices

- Taxonomy ("Design Space")
- Keyboards
- Pointing Devices
- Matching Devices to Work

Slide 1 Lecture 8-1

Taxonomy of Input Devices

- · Keyboards
 - QWERTY and Dvorak keyboards
 - Chorded keyboards
- · Pointing Devices
 - Mice, trackballs, and touchpads
 - Joysticks
- · Tablets and Pen Devices

 - Graphics tablets - Handwriting recognition
 - Pen input devices
- · Voice recognition · Assistive Technologies

Discrete Entry Devices

Continuous Entry Devices

Slide 2 Lecture 8-1

Keyboard Design Considerations

- · Physical Design
 - Size of keys
 - Spacing of keys
 - Size and contrast of symbols
 - Key / switch mechanism
 - Electromechanical switches
 Rubber dome technology
 - Membrane keyboards
 Useful in dirty environments
 Feedback is extremely important to usability
- Keyboard Layout
 - Arrangement of keys

Lecture 8-1

Slide 4

Slide 3 Lecture 8-1

Keyboard Layouts

- QWERTY Keyboard
- Dvorak Keyboard
- Alphabetic Keyboards

http://www.mwbrooks.com/dvorak/layout.html

http://www.mwbrooks.com/dvorak/dvorkeys.pdf

Lecture 8-1 Slide 5

QWERTY Keyboards

- · QWERTY name for top left key row sequence
 - Sholes = inventor (sometimes called the Sholes keyboard)
- · Became popular in 1874 after several prototypes
- · Arrangement reduced jamming of keys in manual typewriters
 - S, T, and H are far apart even though they occur together frequently
 - Difficult to track down documentation of this story
 - Levered hammers have disappeared: jamming does not occur in electric and electronic keyboard devices
- · ANSI standard
- · Universal in typewriter and computer keyboards
 - Not so for specialty devices, handheld devices, technical instruments, plane cockpit controls and devices
 - Alphabetic layouts compete for QWERTY in these devices
 - Implicit theory = nonprofessional typists can use alphabetic order to more quickly find letters, thus typing is easier

Lecture 8-1 Slide 6

QWERTY versus Alphabetic

- Michaels (1971) Bell Labs study -- Human Factors vol. 12, p. 419
- Compared
 - QWERTY
 - 3-Row Alphabetic arrangement
- · Novice and Expert users:
 - 10 half hour sessions
 - Half started with QWERTY first, half alphabetic first
 - Entered names and addresses from telephone directory
- Results
 - Measured work output, keying speed, error rate
 - QWERTY better for skilled and semi-skilled typists
 - Slow-down for skilled typists on alphabetic keyboard is "drastic"
 - No difference for novice typists (the very lowest skilled)

Lecture 8-1 Slide 7

Dvorak Simplified Keyboard

http://www.mwbrooks.com/dvorak/dvorkeys.pdf

- August Dvorak, 1932 patent
- Applied human factors to keyboard layout
- Arranged on basis of frequency of letter use and patterns in English
- · Vowels and frequent consonants on home row
 - 70% of words can be typed only on home row
 - Alternating hands is faster, so vowels and consonants on opposite sides of the row
- Claims have been made to be as much as 60% faster (not substantiated)

QWERTY vs. Dvorak

- Norman & Fisher (1982) "Why alphabetic keyboards are not easy to use: Keyboard layout doesn't much matter."
- Compared keyboards
 - QWERTY
 - Dvorak
 - Alphabetic (5 versions)
 - Random
- Novice users
 - Alphabetic keyboard only slightly better than random
 - QWERTY better than alphabetic even with just slight knowledge of it
- Expert typists (computer simulation)
 - Dvorak only 5% improvement over QWERTY
- Conclusions
- Novice typists resort to visual search -- not to knowledge of the alphabet
- Recommend against changing layout
- Keyboards can be improved primarily by attention to physical design

Lecture 8-1 Slide

Keyboard Conclusions

- Norman (1983) "The DVORAK revival: is it really worth the cost?"
 - Skeptical of claims of 60% improvement, finds 5-10% in his research
 - Even a 10-20% improvement does not matter, typists varying ifrom 60-70 wpm (17% different) are not considered different in offices
 - Costs of changing QWERTY are enormous and impractical
 - Unlikely to be ease of learning differences
- · Alphabetic keyboards

Lecture 8-1

- Norman and Michaels studies suggest that novice users gain nothing by having alphabetic layout (other studies as well)
- Skilled typists are several penalized by alphabetic layouts
 However, this assumes a keyboard which you can touch-type
- Is there any reason to ever use and alphabetic keyboard?

Slide 10

Chorded Keyboards

- Chorded Keyboard
 - Like playing chord on piano
 - Several keys must be presented at once to enter a single character
 - Advantages and Disadvantages
 - Many fewer keys, keyboard fits into smaller space
 - One-handed operation
 - Requires often steep training curve
 - Some claims that highly trained chord keyboarders can enter data faster than skilled typists on standard keyboard
- Gopher (1980s)
 - Make chord sequences resemble letter shapes in their positional locations (Hebrew letters)

Pointing Devices

- Mouse
 - First mice (Xerox, Bell Labs) were large, round, and had 3 buttons
 - Apple mouse: one button
 - Two button mouse (Windows)
 - Three button mouse (Unix workstations)

Lecture 8-1 Slide 11

Mice and Trackballs (1)

"Augmented" Mice

- Buttons, scroll wheels

Mouse Operation

- Ball - Optical

Cordless

CAD cursor: 4 programmable buttons

Cordless

Optical - no ball

Slide 13 Lecture 8-1

Mouse Simplicity

- Alan Kay (~1988)
 - Speculates mouse is easy to use because it uses a more primary mode of thinking than logical, symbol manipulation
 - Piaget's sensorimotor thinking
 - Children pick up use of mouse very early, prior to literacy
- · Apple one-button mouse
 - Best design (improvement on original Doug Englebart mouse) simple point and click -- no ambiguity as to which button to press (Norman)
- · Apple Pro Mouse (2001) has no buttons
 - Body pivots up and down
 - Entire upper enclosure is button
 - Clicking performed with any number of fingers or palm
 - Accommodates different hand shapes and sizes
 - Question: is "no button" an affordance problem?

Slide 14 Lecture 8-1

Mouse Madness

- Multiple buttons reveal extended menus in windowing systems
 - Not optional in Unix system, multiple button menus are required
 - Second and third buttons reveal menus necessary for normal use
- Programmable buttons -- where does it all end?
- PowerMouse (~1989) touts "38 small programmable buttons"
- Late 90s Early 00's adds the scroll wheel
 - Scroll wheel doubles as a 3rd button
 - Logitech adds side buttons and trackballs to top and sides in some models

Mice and Trackballs (2)

Trackballs

- Often described as "reverse mouse"

Pointing experience is different from mouse

User moves ball with

fingers or palm instead of sliding across surface

- Preferred by some

- Data is scant, but supports mouse as most accurate device

· Combined Devices

Side Тор

Trackballs

Combination Trackball / Mouse

Slide 16 Lecture 8-1

Slide 15 Lecture 8-1

Mouse Shapes (1)

- Little attention paid at first to ergonomic shape
 - First mice were large and uncomfortable
 - First apple mice box-shaped, early windows mice rounded rectangle
- Followed by wide experimentation in "ergonomic" designs
 - Differentiation in market driving variations
 - Actual ergonomic nature is questionable, more a matter of industrial design
- Empirical research indicates "bar of soap" shape is preferable

One so-called "ergo-mouse"

Lecture 8-1 Slide 17

Mouse Shapes (2)

- Customised left and right handed mice
- Customized for hand size
 - Mice sized for children
 - Microsoft
 "home" mouse
 fit "in between"
 size for adults
 and children

Lecture 8-1 Slide 18

Touchpads

Laptop device

Lecture 8-1

- Started on keyboards
- Replaced trackballs and IBM's track point mouse as favorite laptop alternative
- Movement of finger across surface moves cursor
 - Relative movement like trackball

Slide 19

IBM Track Point Mouse

- · Track Point Mouse
 - A.K.A. "Eraser-head mouse"
 - Developed at Watson Research Center
 - Standard on IBM Laptops and a few other brands
- "Nudging" movement of eraser-like ball moves cursor

Experimental two-handed track point developed at IBM Almaden Research Center

Joysticks

- · Now primarily a game device
- Predates mouse and other pointing devices

Combined Devices

Track point mouse (IBM)

Scroll point mouse (IBM)
Joystick / Mouse combination

Touchpad / Mouse (Not to mention buttons and cursor keys)

Slide 22

Lecture 8-1 Slide 21

Lecture 8-1

Tactile Feedback Pointing Devices

- Tactile feedback device exerts varying pressure back to user
- Used as game feedback device -- "virtual reality" function
- Or, tactile feedback represents windowing system elements ("bump" over window edge, etc.)

Tactile feedback track point (IBM, experimental)

Wingman force feedback mouse

Lecture 8-1 Slide 23

Graphics Tablets

- Pen and paper like surface
 - Pen movements echoed on monitor
 - Can also do mouse-like cursor and selection movements
 - Primary application as artist tool
 - Some models combine mouse with tablet doubling as mouse pad

LCD Pen Tablet (Wacom)
combines pen surface with
LCD monitor

Pen Input

- Handwriting Recognition
 - Newton, EO: Recognition technology not accurate enough for usability
 - Palm, Visor, Windows CE handhelds; Graffitti alphabet
 - User conforms to machine limitations by using rigidly defined order of strokes resembling, but not matching, normal letter formation
 - Nevertheless, accuracy makes this class of device usable

Pen input has a long history: "Light pens" considerably predate mice

Slide 25 Lecture 8-1

Other Input Devices (1)

- Touchscreens
 - Used for public displays, open public kiosks
 - Libraries, malls, museums, Internet kiosks
 - Solves problem of theft or ware on attached device such as mouse
 - More "intuitive" than use of mouse, self-explanatory ("touch here")
 - Special considerations in user interface design
 - sufficient size for finger movements and accuracy
 - timings for finger "bounces"
 - · spacing
 - feedback

Slide 26 Lecture 8-1

Other Input Devices (2)

- · Virtual Reality Devices
 - Data Glove
 - "Flying Mouse"
 - 3D sensor like that in data glove
 - embedded in mouse Mouse can move up in space as
 - well as on flat tabletop space
- Voice Recognition (ASR = Automatic Speech Recognition
 - Spoken commands control menus, launch applications, enter text
 - Covered in more detail later in course
 - Eye tracking and head tracking
 - Finds most common application in accessibility device
 - Attempts to make more common -- IBM video
- · Mole (foot controlled mouse)

Slide 27 Lecture 8-1

Assistive Devices

- Allow users with movement or visual disabilities to use or more effectively use computers
- Voice recognition
- Eye and head movement input
 - Eye "typer"
 - eye movement monitored with camera device
 - keyboard displayed on screen, user looks at desired letter
- · Mouth-held sticks to press keys
- Head-mounted pointer replaces mouse
- Adaptation of existing input devices
 - Keyboard equivalents to mouse movements
 - Alter sensitivity of keys, mouse, for limited mobility, tremors, etc.

 - BounceKeys -- set keystroke delay
 StickyKeys -- Chorded key movements (e.g. Ctrl-Alt-Del) accomplished by sequential keying

Slide 28 Lecture 8-1

Fitts' Law

- Paul Fitts (1954)
 - In ergonomics, a predictive model of motor movements to visual targets of different sizes and distances.
 - Fitts' Law applies to pointing devices and touch screens
- Predict time to move distance D to target of width W
- · Pointing time is a function of distance and width
 - Targets that are farther away take longer to point to
 - Smaller targets take longer to point to
- · Speed-Accuracy Trade-off
- Original Task: Repetitive tapping task
 - Note: No cognitive planning load → focus on pure motor action (Buxton, 2003)

Lecture 8-1 Slide 29

Fitts' Tapping Task

Fig. From W. Buxton: http://www.billbuxton.com

Lecture 8-1 Slide 30

Fitts' Law

- Index of difficulty = log₂ (2D / W)
- Time to perform pointing action = C₁ + C₂ (Index of difficulty)
 - C₁ and C₂ are device-dependent constants
- Buxton (2003):
 - Fitts' Law applied to 'target acquisition tasks'
 - Recent research shows it can be applied to dragging
 - Gillian et al. (1990), MacKenzie et al. (1991)

Lecture 8-1 Slide 31

Fitts' Law Applied to Mouse Movements

Fig. From W. Buxton: http://www.billbuxton.com

The Steering Law

- Accot & Zhai (1997) → Linked to Fitts' Law
- Moving along trajectories

 - Nested menusDrawing curves

Fig. From W. Buxton: http://www.billbuxton.com

Slide 33 Lecture 8-1

Matching Devices to Work (1)

- · Input devices differ in advantages and disadvantages depending upon
- Buxton (1986) scenarios (See Preece et al. Ch. 11, pg. 221 ff.)
- Scenario 1: Pan over large graphical surface (VLSI array)
 - Trackball pans by rolling hand over ball motion → motion
 - Joystick, pans by moving stick off center in desired direction · Speed of pan corresponds to distance off center
 - Buxton says trackball is more natural
 - · Motion of ball mapped directly to motion over surface
 - With joystick, position is mapped to motion, association must be learned
- · Scenario 2: Add simultaneous zooming and panning
 - With joystick, can displace stick than twist to zoom
 - Simultaneous rolling and twisting cannot be done with trackball

Slide 34 Lecture 8-1

Matching Devices to Work (2)

- Scenario 3: Oil refinery GUI valves need to be adjusted
 - Direct manipulation → adjust valve on screen Trackball vs. joystick with pot mounted on stick
 - Pan then operate on object by twisting without changing x-y position
 - · Trackball: move ball, rest finger on bezel, then twist up/down
- · Conclusions
 - Must take into accounts movements that may be difficult or impossible with
 - Set up natural mappings of device motion to task

Matching Devices to Environment

- Kiosks
 - Attached device such as mouse can be stolen or broken
 - Devices such as mouse or trackball requires some prior skill, or user must begin to learn as they use kiosk
- · Laptops
 - Mouse is large, inconvenient, can be lost
 - Devices which can be attached to laptop: touchpad, trackball, eraser point
- Handheld
 - Small device: tiny keyboards are difficult to use, mice are impossible
- Pen is natural input device, recalls notpad with pen/pencil
- · "In the field" -- UPS delivery person
 - Pen-based device replaces clipboard and forms

Slide 35 Slide 36 Lecture 8-1 Lecture 8-1